HackerRank Forming a Magic Square Solution
In this post, We are going to solve HackerRank Forming a Magic Square Problem. We define a magic square to be an n x m matrix of distinct positive integers from 1 to n square where the sum of any row, column, or diagonal of length n is always equal to the same number: the magic constant.
You will be given a matrix 3×3 of integers in the inclusive range [1, 9]. We can convert any digit a to any other digit b in the range [1, 9] at cost of [a – b]. Given this s, convert it into a magic square at a minimal cost. Print this cost on a new line.
Note: The resulting magic square must contain distinct integers in the inclusive range [1, 9].
Example
$s = [[5, 3, 4], [1, 5, 8], [6, 4, 2]]
The matrix looks like this:
5 3 4 1 5 8 6 4 2
We can convert it to the following magic square:
8 3 4 1 5 9 6 7 2
This took three replacements at a cost of [5 -8] + [8 – 9] + [4-7}.
Function Description
Complete the formingMagicSquare function in the editor below.
formingMagicSquare has the following parameter(s):
- int s[3][3]: a 3×3 array of integers
Returns
- int: the minimal total cost of converting the input square to a magic square
Input Format
Each of the 3 lines contains three space-separated integers of row s[I].
Sample Input 0
4 9 2 3 5 7 8 1 5
Sample Output 0
1
Explanation 0
If we change the bottom right value,s [2] [2], from 5 to 6 at a cost of [6 – 5] = 1, s becomes a magic square at the minimum possible cost.
Forming a Magic Square C Solution
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
int main() {
/* Enter your code here. Read input from STDIN. Print output to STDOUT */
int matrix[3][3];
int magicArray1[8] = {4,9,2,7,6,1,8,3};
int magicArray2[8] = {2,9,4,3,8,1,6,7};
int indexes[8] = {0,1,2,12,22,21,20,10};
int i, j, shift = 0;
int costResult = 100, costTmp = 0;
int found = 0;
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
scanf("%d", &matrix[i][j]);
}
scanf("\n");
}
for (shift = 0; shift < 8 && !found; shift += 2){
costTmp = 0;
for (i = 0, j = shift; i < 8 ; i++) {
costTmp += abs(matrix[indexes[i]/10][indexes[i]%10] - magicArray1[j]);
j = (j + 1) % 8;
}
if (costTmp == 0){
found = 1;
costResult = 0;
} else if (costTmp < costResult) {
costResult = costTmp;
}
}
for (shift = 0; shift < 8 && !found; shift += 2){
costTmp = 0;
for (i = 0, j = shift; i < 8 ; i++) {
costTmp += abs(matrix[indexes[i]/10][indexes[i]%10] - magicArray2[j]);
j = (j + 1) % 8;
}
if (costTmp == 0){
found = 1;
costResult = 0;
} else if (costTmp < costResult) {
costResult = costTmp;
}
}
costResult += abs(matrix[1][1] - 5);
printf("%d", costResult);
return 0;
}
Forming a Magic Square C++ Solution
#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
const int magic_squares_3x3[8][9] = {
{8, 1, 6, 3, 5, 7, 4, 9, 2},
{4, 3, 8, 9, 5, 1, 2, 7, 6},
{2, 9, 4, 7, 5, 3, 6, 1, 8},
{6, 7, 2, 1, 5, 9, 8, 3, 4},
{6, 1, 8, 7, 5, 3, 2, 9, 4},
{8, 3, 4, 1, 5, 9, 6, 7, 2},
{4, 9, 2, 3, 5, 7, 8, 1, 6},
{2, 7, 6, 9, 5, 1, 4, 3, 8}
};
int matrix[9];
int main() {
for (int i = 0; i < 9; i++) scanf("%d", &matrix[i]);
int min_cost = 100;
for (int i = 0; i < 8; i++) {
int cost = 0;
for (int j = 0; j < 9; j++) cost += abs(matrix[j] - magic_squares_3x3[i][j]);
if (cost < min_cost) min_cost = cost;
}
printf("%d\n", min_cost);
return 0;
}
Forming a Magic Square C Sharp Solution
public static void FormMagicSquare(int n)
{
int[,] magicSquare = new int[n, n];
int row = n / 2;
int col = n - 1;
for (int num = 1; num <= n * n; )
{
if (row == -1 && col == n)
{
col = n - 2;
row = 0;
}
else
{
if (col == n)
col = 0;
if (row < 0)
row = n - 1;
}
if (magicSquare[row, col] != 0)
{
col -= 2;
row++;
continue;
}
else
magicSquare[row, col] = num++;
col++;
row--;
}
Console.WriteLine("The Magic Square for {0}x{0}:", n);
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
Console.Write("{0} ", magicSquare[i, j]);
}
Console.WriteLine();
}
}
Forming a Magic Square Java Solution
import java.io.*;
import java.util.*;
public class Solution {
public static void main(String[] args) {
/* Enter your code here. Read input from STDIN. Print output to STDOUT. Your class should be named Solution. */
Scanner scan = new Scanner(System.in);
int[] square = new int[9];
for (int i = 0; i < 9; i++) {
square[i] = scan.nextInt();
}
int[][] matrix={{4,9,2,3,5,7,8,1,6},
{2,7,6,9,5,1,4,3,8},
{6,1,8,7,5,3,2,9,4},
{8,3,4,1,5,9,6,7,2},
{2,9,4,7,5,3,6,1,8},
{6,7,2,1,5,9,8,3,4},
{8,1,6,3,5,7,4,9,2},
{4,3,8,9,5,1,2,7,6}};
int minOff = 99;
for (int i = 0; i < 8; i++) {
int off = 0;
for (int j = 0; j < 9; j++) {
if (square[j] != matrix[i][j]) {
off += Math.abs(square[j] - matrix[i][j]);
}
}
if (off < minOff) minOff = off;
}
System.out.println(minOff);
}
}
Forming a Magic Square JavaScript Solution
process.stdin.resume();
process.stdin.setEncoding('ascii');
var input_stdin = "";
var input_stdin_array = "";
var input_currentline = 0;
process.stdin.on('data', function (data) {
input_stdin += data;
});
process.stdin.on('end', function () {
input_stdin_array = input_stdin.split("\n");
main();
});
function readLine() {
return input_stdin_array[input_currentline++];
}
/////////////// ignore above this line ////////////////////
function main() {
var square = new Array();
for(var i = 0; i < 3; i++){
square.push(readLine().split(' ').map(Number));
}
var perm = [[[8, 1, 6], [3, 5, 7], [4, 9, 2]],
[[6, 1, 8], [7, 5, 3], [2, 9, 4]],
[[4, 9, 2], [3, 5, 7], [8, 1, 6]],
[[2, 9, 4], [7, 5, 3], [6, 1, 8]],
[[8, 3, 4], [1, 5, 9], [6, 7, 2]],
[[4, 3, 8], [9, 5, 1], [2, 7, 6]],
[[6, 7, 2], [1, 5, 9], [8, 3, 4]],
[[2, 7, 6], [9, 5, 1], [4, 3, 8]]];
var min = 10000;
for(var i = 0; i < 8; i++) {
var sum = 0;
for(var x = 0; x < 3; x++) {
for(var y = 0; y < 3; y++) {
sum+=Math.abs(perm[i][x][y]-square[x][y]);
}
}
if (sum < min) {
min = sum;
}
}
console.log(min);
}
Forming a Magic Square Python Solution
s = []
for i in range(3):
s.append([int(i) for i in input().split()])
orig = [[4, 9, 2], [3, 5, 7], [8, 1, 6]]
all_squares = [orig]
all_squares.append(orig[::-1])
all_squares.append([i[::-1] for i in orig])
all_squares.append(all_squares[2][::-1])
all_squares.append([[4, 3, 8], [9, 5, 1], [2, 7, 6]])
all_squares.append(all_squares[4][::-1])
all_squares.append([i[::-1] for i in all_squares[4]])
all_squares.append(all_squares[6][::-1])
#for i in all_squares:
# for j in i:
# print(j)
# print("\n")
least = 99
for i in all_squares:
temp = 0
for j in range(3):
for k in range(3):
temp += abs(s[j][k]-i[j][k])
if temp < least:
least = temp
print(least)
Other Solution