HackerRank Prim’s (MST) : Special Subtree Yashwant Parihar, May 17, 2023May 17, 2023 In this post, we will solve HackerRank Prim’s (MST) : Special Subtree Problem Solution. Given a graph which consists of several edges connecting its nodes, find a subgraph of the given graph with the following properties: The subgraph contains all the nodes present in the original graph.The subgraph is of minimum overall weight (sum of all edges) among all such subgraphs. It is also required that there is exactly one, exclusive path between any two nodes of the subgraph. One specific node S is fixed as the starting point of finding the subgraph using Prim’sAlgorithm. Find the total weight or the sum of all edges in the subgraph.Examplen = 3edges = [[1, 2, 2], [2, 3, 2], [1, 3, 3]]start = 1 Starting from node 1, select the lower weight edge, i.e. 1 → 2, weight 2.Choose between the remaining edges, 13, weight 3, and 2 → 3, weight 2.The lower weight edge is 2 + 3 weight 2.All nodes are connected at a cost of 2 + 2 = 4. The edge 1 → 3 is not included in the subgraph. Function Description Complete the prims function in the editor below. prims has the following parameter(s): int n: the number of nodes in the graph int edges[m][3]: each element contains three integers, two nodes numbers that are connected and the weight of that edge int start: the number of the starting node Returns int: the minimum weight to connect all nodes in the graph Input FormatThe first line has two space-separated integers n and m, the number of nodes and edges inthe graph.Each of the next m lines contains three space-separated integers u. v and w, the end nodes of edges[i], and the edge’s weight.The last line has an integer start, the starting node. Sample Input 0 5 6 1 2 3 1 3 4 4 2 6 5 2 2 2 3 5 3 5 7 1 Sample Output 0 15 Explanation 0 The graph given in the test case is shown as : The starting node is 1 (in the given test case) Applying the Prim’s algorithm, edge choices available at first are:1 → 2 (WT. 3) and 1→ 3 (WT. 4), out of which 1→ 2 is chosen (smaller weight of edge). Now the available choices are:1→ 3 (WT. 4), 2 →3 (WT. 5), 25 (WT. 2) and 2 → 4 (WT. 6), out of which 2 → 5 is chosen by the algorithm.Following the same method of the algorithm, the next chosen edges, sequentially are:1 → 3 and 2 → 4.Hence the overall sequence of edges picked up by Prim’s are:12:25:13:2 → 4and the total weight of the MST (minimum spanning tree) is: 3+2+4+6=15 HackerRank Prim’s (MST) : Special Subtree Problem Solution Prim’s (MST) : Special Subtree C Solution #include <stdio.h> #include <string.h> #include <math.h> #include <stdlib.h> struct nodes { int mark; int pre; int val; }; int n; int m; int s; int e[3001][3001]; struct nodes node[3001]; int min_mark() { int j,m=0,max=100001; for(j=1;j<=n;j++) if(node[j].mark!=1 && node[j].val < max) {m=j; max=node[j].val;} return m; } void SP(int s) { int j; for(j=1;j<=n;j++) if(e[s][j]!=-1 && node[j].mark!=1) { if(node[j].pre==0) {node[j].pre=s; node[j].val= e[s][j];} else if(node[j].pre!=0 && node[j].val > e[s][j]) {node[j].pre=s; node[j].val= e[s][j];} } } int main() { int i,j,k,l,d; scanf("%d",&n); scanf("%d",&m); for(k=1;k<=n;k++) for(l=1;l<=n;l++) e[k][l]=-1; for(j=0;j<m;j++) { scanf("%d",&k); scanf("%d",&l); scanf("%d",&d); if(e[k][l]==-1) e[k][l]=d; else if(e[k][l] > d) e[k][l]=d; e[l][k]=e[k][l]; } scanf("%d",&s); //s=1; for(k=1;k<=n;k++) { if(k==s) {node[k].mark=1; node[k].pre=0; node[k].val=0;} else {node[k].mark=0; node[k].pre=0; node[k].val= 100000;} } SP(s); d=min_mark(); while(d!=0) {node[d].mark=1; SP(d); d=min_mark();} d=0; for(k=1;k<=n;k++) if(node[k].pre!=0) d+=e[k][node[k].pre]; printf("%d",d); //printf("%d:\tmark= %d\tpre= %d\tval= %d\n",k,node[k].mark,node[k].pre,node[k].val); return 0; } Prim’s (MST) : Special Subtree C++ Solution #include<bits/stdc++.h> # define INF 0x3f3f3f3f using namespace std; typedef pair<int,int> iPair; class Graph{ int V; list<iPair> *adj; public: Graph(int V); void addEdge(int u,int v,int w); void prim(int s); }; Graph::Graph(int V){ this->V = V; adj = new list<iPair>[V]; } void Graph::addEdge(int u,int v,int w){ adj[v].push_back(make_pair(u,w)); adj[u].push_back(make_pair(v,w)); } void Graph::prim(int s){ priority_queue< iPair, vector<iPair> , greater<iPair> > pq; vector<int> key(V,INF); vector<int> parent(V,-1); vector<bool> inMst(V,false); key[s]=0; pq.push(make_pair(key[s],s)); while(!pq.empty()){ int u = pq.top().second; pq.pop(); inMst[u]=true; list<iPair>::iterator i; for(i = adj[u].begin();i!=adj[u].end();i++){ int v = (*i).first; int w = (*i).second; if(!inMst[v]&&key[v]>w){ parent[v]=u; key[v]=w; pq.push(make_pair(key[v],v)); } } } int count=0; for(int i=1;i<V;i++){ if(parent[i]!=-1){ count+=key[i]; //cout<<parent[i]<<"---"<<i<<endl; } } cout<<count<<endl; } int main(){ int N,M,x,y,w,S; cin>>N>>M; Graph g(N+1); for(int i=0;i<M;i++){ cin>>x>>y>>w; g.addEdge(x,y,w); } cin>>S; g.prim(S); return 0; } Prim’s (MST) : Special Subtree C Sharp Solution using System; using System.Collections.Generic; using System.IO; class Solution { public class Edge { public int D, W; public Edge(int dest, int weight) { D = dest; W = weight; } public Edge N; } public static Edge R = null; public static void Add(Edge e) { if(R == null) { R = e; } else if(e.W < R.W) { e.N = R; R= e; } else { Edge x = R; while(x.N != null && x.N.W < e.W) { x = x.N; } e.N = x.N; x.N = e; } } static void Main(String[] args) { string[] line = Console.ReadLine().Split(' '); int N = Int32.Parse(line[0]); int M = Int32.Parse(line[1]); List<Edge>[] edges = new List<Edge>[N+1]; for(int n=1; n<N+1; n++) { edges[n] = new List<Edge>(); } for(int m=0; m<M; m++) { line = Console.ReadLine().Split(' ' ); int x = Int32.Parse(line[0]); int y = Int32.Parse(line[1]); int w = Int32.Parse(line[2]); edges[x].Add(new Edge(y,w)); edges[y].Add(new Edge(x,w)); } int S = Int32.Parse(Console.ReadLine()); foreach(Edge e in edges[S]) { Add(e); } bool[] done = new bool[N+1]; done[S] = true; int cnt = 1; int sum = 0; while(cnt < N && R != null) { Edge e = R; R = e.N; if(!done[e.D]) { sum += e.W; done[e.D] = true; cnt++; foreach(Edge ee in edges[e.D]) { if(!done[ee.D]) Add(ee); } } } Console.WriteLine(sum); } } Prim’s (MST) : Special Subtree Java Solution import java.io.*; import java.math.*; import java.security.*; import java.text.*; import java.util.*; import java.util.concurrent.*; import java.util.function.*; import java.util.regex.*; import java.util.stream.*; import static java.util.stream.Collectors.joining; import static java.util.stream.Collectors.toList; class Cost implements Comparable<Cost> { public int r, v; public Cost(int cost, int vertex) { r = cost; v = vertex; } @Override public int compareTo(Cost c) { if (r < c.r) return -1; if (r> c.r) return 1; if (v < c.v) return -1; if (v > c.v) return 1; return 0; } } class Result { /* * Complete the 'prims' function below. * * The function is expected to return an INTEGER. * The function accepts following parameters: * 1. INTEGER n * 2. 2D_INTEGER_ARRAY edges * 3. INTEGER start */ // Slide mst.p52 public static boolean[] marked; public static PriorityQueue<Cost> pq; public static List<Cost> mstCosts; public static void visit(List<List<Cost>> danhsachlienke, int v) { marked[v] = true; for(Cost cost : danhsachlienke.get(v)) { if (!marked[cost.v]) { pq.add(cost); } } } public static int prims(int n, List<List<Integer>> edges, int start) { List<List<Cost>> danhsachlienke = new ArrayList<>(n + 1); pq = new PriorityQueue<Cost>(); marked = new boolean[n+1]; mstCosts = new ArrayList<Cost>(); for(int i = 0; i < n + 1; ++i) { danhsachlienke.add(new ArrayList<Cost>()); } for (List<Integer> edge : edges) { // System.out.println(edge.get(0) + " " + edge.get(1) + " " + edge.get(2)); danhsachlienke.get(edge.get(0)).add(new Cost(edge.get(2), edge.get(1))); danhsachlienke.get(edge.get(1)).add(new Cost(edge.get(2), edge.get(0))); } visit(danhsachlienke, start); // mstCosts.size() == mstEdges.size() while (!pq.isEmpty() && mstCosts.size() < n - 1) { Cost cost = pq.poll(); if (marked[cost.v]) { continue; } else { mstCosts.add(cost); visit(danhsachlienke, cost.v); } } int total = 0; for (Cost cost : mstCosts) { total += cost.r; } return total; } } public class Solution { public static void main(String[] args) throws IOException { BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(System.in)); BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(System.getenv("OUTPUT_PATH"))); String[] firstMultipleInput = bufferedReader.readLine().replaceAll("\\s+$", "").split(" "); int n = Integer.parseInt(firstMultipleInput[0]); int m = Integer.parseInt(firstMultipleInput[1]); List<List<Integer>> edges = new ArrayList<>(); IntStream.range(0, m).forEach(i -> { try { edges.add( Stream.of(bufferedReader.readLine().replaceAll("\\s+$", "").split(" ")) .map(Integer::parseInt) .collect(toList()) ); } catch (IOException ex) { throw new RuntimeException(ex); } }); int start = Integer.parseInt(bufferedReader.readLine().trim()); int result = Result.prims(n, edges, start); bufferedWriter.write(String.valueOf(result)); bufferedWriter.newLine(); bufferedReader.close(); bufferedWriter.close(); } } Prim’s (MST) : Special Subtree JavaScript Solution function calc(graph, edges, s) { var total = 0; var tree = []; tree[s] = []; while(true) { var min = [-1, -1, 1000000]; for(var i=0; i<edges.length; i++) { if(tree[edges[i][0]] && !tree[edges[i][1]] && edges[i][2] <= min[2]) min = edges[i]; } if(min[0] == -1) return total; //console.log(min[0], min[1], min[2]); tree[min[0]].push([min[1], min[2]]); tree[min[1]] = []; total += min[2]; } } function processData(input) { var lines = input.split('\n'); var index = 0; var tokens = lines[index++].split(' '); var N = parseInt(tokens[0]); var M = parseInt(tokens[1]); var graph = []; for(var i=0; i<=N; i++) graph[i] = []; var edges = []; for(var j = 0; j < M; j++) { var tokens = lines[index++].split(' '); var a = parseInt(tokens[0]); var b = parseInt(tokens[1]); var w = parseInt(tokens[2]); edges.push([a, b, w]); edges.push([b, a, w]); graph[a].push([b, w]); graph[b].push([a, w]); } var s = parseInt(lines[index++]); var total = calc(graph, edges, s); console.log(total); } process.stdin.resume(); process.stdin.setEncoding("ascii"); _input = ""; process.stdin.on("data", function (input) { _input += input; }); process.stdin.on("end", function () { processData(_input); }); Prim’s (MST) : Special Subtree Python Solution import operator n, m = map(int, input().split()) edges = {} for __ in range(0, m): x, y, r = map(int, input().split()) x -= 1 y -= 1 x, y = min(x, y), max(x, y) if (x, y) in edges: edges[x, y] = min(edges[x, y], r) else: edges[x, y] = r s = int(input()) - 1 trees = [] sorted_edges = sorted(edges.items(), key=operator.itemgetter(1), reverse=True) s = 0 while len(sorted_edges) > 0: (x, y), r = sorted_edges.pop() ok = True xi = None yi = None for k in range(0, len(trees)): if x in trees[k] and y in trees[k]: ok = False break elif x in trees[k]: trees[k].add(y) xi = k elif y in trees[k]: trees[k].add(x) yi = k if ok: s += r if xi != None and yi != None: trees[xi] |= trees[yi] trees.pop(yi) elif xi != None: trees[xi].add(y) elif yi != None: trees[yi].add(x) else: trees.append({x, y}) print(s) c C# C++ HackerRank Solutions java javascript python CcppCSharpHackerrank Solutionsjavajavascriptpython