HackerRank Cut the Tree Problem Solution Yashwant Parihar, May 10, 2023May 10, 2023 In this post, we will solve HackerRank Cut the Tree Problem Solution. There is an undirected tree where each vertex is numbered from 1 ton, and each contains a data value. The sum of a tree is the sum of all its nodes’ data values. If an edge is cut, two smaller trees are formed. The difference between two trees is the absolute value of the difference in their sums.Given a tree, determine which edge to cut so that the resulting trees have a minimal difference between them, then return that difference.Exampledata = [1, 2, 3, 4, 5, 6]edges = [(1, 2), (1, 3), (2, 6), (3, 4), (3, 5)] The values are calculated as follows: Edge Tree 1 Tree 2 Absolute Cut Sum Sum Difference 1 8 13 5 2 9 12 3 3 6 15 9 4 4 17 13 5 5 16 11 The minimum absolute difference is 3. Note: The given tree is always rooted at vertex 1. Function Description Complete the cutTheTree function in the editor below. cutTheTree has the following parameter(s): int data[n]: an array of integers that represent node values int edges[n-1][2]: an 2 dimensional array of integer pairs where each pair represents nodes connected by the edge Returns int: the minimum achievable absolute difference of tree sums Input FormatThe first line contains an integer n, the number of vertices in the tree.The second line contains n space-separated integers, where each integer u denotes thenode[u] data value, data[u].Each of the n – 1 subsequent lines contains two space-separated integers u and that υdescribe edge u ↔ v in tree t. Sample Input STDIN Function ----- -------- 6 data[] size n = 6 100 200 100 500 100 600 data = [100, 200, 100, 500, 100, 600] 1 2 edges = [[1, 2], [2, 3], [2, 5], [4, 5], [5, 6]] 2 3 2 5 4 5 5 6 Sample Output 400 Explanation There are n − 1 = 5 edges we can cut: Edge 1 → 2 results in d1↔2 = 1500 – 100 = 1400 Edge 2 → 3 results in d2↔3 = 1500 – 100 = 1400 Edge 2 → 5 results in d2↔5 = 1200 – 400 = 800 Edge 4 → 5 results in d4↔5=1100 – 500 = 600 Edge 5 → 6 results in d5↔6 = 1000 – 600 = 400The minimum difference is 400. HackerRank Cut the Tree Problem Solution Cut the Tree C Solution #include <stdio.h> #include <string.h> #include <math.h> #include <stdlib.h> int main() { //idea: accumulate costs bottom up from leaves to root //the costs are c1 for one subtree, and totalcost-c1 for the other long n; long long vvalue[100000]={0}; //stores the value of each vertex scanf("%ld",&n); for(long i=0;i<n;i++){scanf("%lld",&vvalue[i]);} //needs a good data structure to implement the tree long treeedges[n-1][2]; for (long l=0;l<n-1;l++){ long i,j; scanf("%ld %ld",&i,&j); if(i>j) {treeedges[l][0]=j-1;treeedges[l][1]=i-1;} else {treeedges[l][0]=i-1;treeedges[l][1]=j-1;} } //identify number of neighbors for each node long ineighbors[100001]={0},in[100001]={0},nneighbors[100000]={0}; for (long l=0;l<n-1;l++){ nneighbors[treeedges[l][0]]++;nneighbors[treeedges[l][1]]++; } //for (long l=0;l<n;l++){printf("%ld ",nneighbors[l]); printf("\n");} //use counting array to sort neighbors for (long l=0;l<n+1;l++){ ineighbors[l+1]=ineighbors[l]+nneighbors[l]; in[l+1]=ineighbors[l+1]; } //for (long l=0;l<n+1;l++){printf("%ld ",ineighbors[l]);}printf("\n"); long neighbortotal=ineighbors[n]; long allneighbors[neighbortotal]; for (long l=0;l<n-1;l++){ allneighbors[in[treeedges[l][0]]++]=treeedges[l][1]; allneighbors[in[treeedges[l][1]]++]=treeedges[l][0]; } //for(long l=0;l<neighbortotal;l++){printf("%ld ",allneighbors[l]);}printf("\n"); //fill queue with leaves long queue[100000], left=0,right=0; for (long i=0;i<n;i++){ if(nneighbors[i]==1) queue[right++]=i; } //for (long i=left;i<right;i++){printf("%ld ",queue[i]);} printf("\n"); //process queue: long root; while(left<right){ //for (long i=0;i<n+1;i++){printf("%ld ",ineighbors[i]);} printf("\n"); //for (long i=left;i<right;i++){printf("%ld ",queue[i]);} printf("\n"); long thisv=queue[left++]; long neighbor=-1; if(nneighbors[thisv]>0){ neighbor=allneighbors[ineighbors[thisv]++]; //remove duplicate edge in other direction //printf("removing %ld %ld\n",neighbor, thisv); long ptr=ineighbors[neighbor]; while(allneighbors[ptr]!=thisv) ptr++; if(ptr>ineighbors[neighbor]){ long swap=allneighbors[ineighbors[neighbor]]; allneighbors[ineighbors[neighbor]]=allneighbors[ptr]; allneighbors[ptr]=swap; } ineighbors[neighbor]++; nneighbors[thisv]--; //remove edge from thisv nneighbors[neighbor]--; vvalue[neighbor]+=vvalue[thisv]; //add value of thisv if(nneighbors[neighbor]==1) queue[right++]=neighbor; //add to queue if now a leaf } else{ //found root as last node in this scheme root=thisv; } } //for (long i=0;i<n;i++){printf("%ld ",nneighbors[i]);} printf("\n"); //for(long i=0;i<n;i++){printf("%lld ",vvalue[i]);}printf("\n"); long long totalcost=vvalue[root]; //now, for each v have computed accumulated value of subtree rooted at v long long mintreediff=totalcost; for (long l=0;l<n-1;l++){ long i=treeedges[l][0], j=treeedges[l][1]; long long cost1=(vvalue[i]<vvalue[j])?vvalue[i]:vvalue[j]; long long cost2=totalcost-cost1; long long treediff=abs(cost2-cost1); //printf("edge %ld %ld cost %lld\n",i,j,treediff); if(treediff<mintreediff) mintreediff=treediff; } printf("%lld",mintreediff); return 0; } Cut the Tree C++ Solution #include <cmath> #include <cstdio> #include <vector> #include <map> #include <iostream> #include <algorithm> using namespace std; class node { public: int v; int no; multimap<int,node*> e; bool visit; int n; node(int n,int no); }; node::node (int n,int nn){ v=n; no=nn; visit=false; } long mind=999999999999; int dfs(node *n,int tt){ int s=0,x=0,lmin; multimap<int,node*> newe; n->visit=true; for(auto i:n->e){ if(!i.second->visit){ x = dfs(i.second,tt); lmin=abs(2*x-tt); if(lmin<mind){ mind=lmin; //cout<<n->no<<" "<<mind<<endl; } s+=x; newe.insert(make_pair(x,i.second)); } } n->e.clear(); n->e=newe; return s+n->v; } int main() { /* Enter your code here. Read input from STDIN. Print output to STDOUT */ int n,x,y,ss=0; cin>>n; node *a[n+1]; for(int i=1;i<=n;i++){ cin>>x; a[i] = new node(x,i); ss+=x; } for(int i=1;i<=n-1;i++){ cin>>x>>y; a[x]->e.insert(make_pair(9999999999,a[y])); a[y]->e.insert(make_pair(9999999999,a[x])); } int s = dfs(a[1],ss); cout<<mind; return 0; } Cut the Tree C Sharp Solution using System; using System.Collections.Generic; using System.IO; class Node { public int Value; public int SumValue; public int ReachedTimes; public List<Node> Sons = new List<Node>(); } class Solution { static int ReadInt() { while (true) { if (__line == null) __line = System.Console.ReadLine().Split(new[] {' '}, StringSplitOptions.RemoveEmptyEntries); if (__line.Length > __index) { __index++; return Int32.Parse(__line[__index-1]); } else { __line = null; __index = 0; continue; } } } static string[] __line; static int __index; static int leastdiff = int.MaxValue; static int everything; static int[] values; static List<Node> tree = new List<Node>(); static void dfs(int type, Node node, Node parent) { int sum = 0; if (type == 2 && parent != null) { // What is my parent? int parentis = everything - node.SumValue; // What am I? int iam = node.SumValue; int diff = Math.Abs( parentis - iam ); if (diff < leastdiff) { leastdiff = diff; } } foreach(Node son in node.Sons) { if (son != parent) { dfs(type, son, node); if (type == 1) { sum += son.SumValue; } } } if (type == 1) { node.SumValue = sum + node.Value; } } static void Main(String[] args) { int n = ReadInt(); values = new int[n]; for (int i =0;i<n;i++) { values[i] = ReadInt(); Node node = new Node(); everything += values[i]; node.Value = values[i]; tree.Add(node); } // Read links for (int i =0;i<n-1;i++) { int from = ReadInt(); int to = ReadInt(); tree[from-1].Sons.Add(tree[to-1]); tree[to-1].Sons.Add(tree[from-1]); } // DFS 1 dfs(1, tree[0], null); // DFS 2 dfs(2, tree[0], null); Console.WriteLine(leastdiff); } } Cut the Tree Java Solution import java.io.*; import java.math.*; import java.security.*; import java.text.*; import java.util.*; import java.util.concurrent.*; import java.util.function.*; import java.util.regex.*; import java.util.stream.*; import static java.util.stream.Collectors.joining; import static java.util.stream.Collectors.toList; class Result { /* * Complete the 'cutTheTree' function below. * * The function is expected to return an INTEGER. * The function accepts following parameters: * 1. INTEGER_ARRAY data * 2. 2D_INTEGER_ARRAY edges */ public static int cutTheTree(List<Integer> data, List<List<Integer>> edges) { // Approach: // // (1) Build a graph with nodes containing value and sum subTree // => Root will contain whole tree sum. // 1:12 // / | \ // / | \ // 1:1 1:9 1:1 // / | \ // / | \ // 1:1 6:6 1:1 // // (2) Iterate over the graph and figure out min dif using child sums. final int n = data.size(); List<Integer>[] children = new List[n]; for (int i = 0; i < n; i++) children[i] = new ArrayList<>(); int i1, i2; for (List<Integer> edge : edges) { i1 = edge.get(0) - 1; i2 = edge.get(1) - 1; children[i1].add(i2); children[i2].add(i1); } boolean[] visited = new boolean[n]; visited[0] = true; Node root = new Node(0, data.get(0)); root.subTreeSum = addChildren(root, children, data, visited); return minDif(root, root.subTreeSum, Integer.MAX_VALUE); } static int addChildren( Node node, List<Integer>[] children, List<Integer> data, boolean[] visited ) { int subTreeSum = 0; for (int i : children[node.id]) { if (visited[i]) continue; visited[i] = true; Node child = new Node(i, data.get(i)); child.subTreeSum = addChildren(child, children, data, visited); if (node.children == null) node.children = new ArrayList<>(); node.children.add(child); subTreeSum += child.subTreeSum; } return node.val + subTreeSum; } static int minDif(Node node, int treeSum, int curMinDif) { int dif = treeSum - 2*node.subTreeSum; if (dif == 0) return 0; // edge case if (dif < 0) dif *= -1; if (curMinDif > dif) curMinDif = dif; if (node.children != null) for (Node child : node.children) curMinDif = minDif(child, treeSum, curMinDif); return curMinDif; } static final class Node { int id; int val; int subTreeSum; List<Node> children; Node(int id, int val) { this.id = id; this.val = val; this.subTreeSum = 0; } } } public class Solution { public static void main(String[] args) throws IOException { BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(System.in)); BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(System.getenv("OUTPUT_PATH"))); int n = Integer.parseInt(bufferedReader.readLine().trim()); List<Integer> data = Stream.of(bufferedReader.readLine().replaceAll("\\s+$", "").split(" ")) .map(Integer::parseInt) .collect(toList()); List<List<Integer>> edges = new ArrayList<>(); IntStream.range(0, n - 1).forEach(i -> { try { edges.add( Stream.of(bufferedReader.readLine().replaceAll("\\s+$", "").split(" ")) .map(Integer::parseInt) .collect(toList()) ); } catch (IOException ex) { throw new RuntimeException(ex); } }); int result = Result.cutTheTree(data, edges); bufferedWriter.write(String.valueOf(result)); bufferedWriter.newLine(); bufferedReader.close(); bufferedWriter.close(); } } Cut the Tree JavaScript Solution function processData(input) { var lines = input.split('\n'); var n = lines[0]; var nodes = lines[1].split(' ').map(function(x){ return { edges:[], data:parseFloat(x), sum:parseFloat(x), children:0, contributed:0 }; }); for (var i = 2; i < lines.length; ++i) { var ab = lines[i].split(' ').map(function(x){return parseInt(x)-1;}) nodes[ab[0]].edges.push(ab[1]); nodes[ab[1]].edges.push(ab[0]); } var queue = [0]; while (queue.length) { var ptr = queue[queue.length-1]; var node = nodes[ptr]; if (!node.visited) { for (var i = 0; i < node.edges.length; ++i) { var childPtr = node.edges[i]; var child = nodes[childPtr]; if (child.visited) continue; node.children++; child.parent = ptr; queue.push(childPtr); } } node.visited = true; if (node.contributed == node.children) { queue.pop(); if (node.hasOwnProperty('parent')) { var parent = nodes[node.parent]; parent.sum += node.sum; parent.contributed++; } } } var best = nodes[0].sum; for (var i = 0; i < nodes.length; ++i) { best = Math.min(best, Math.abs(nodes[0].sum-2*nodes[i].sum)); } console.log(best); } process.stdin.resume(); process.stdin.setEncoding("ascii"); _input = ""; process.stdin.on("data", function (input) { _input += input; }); process.stdin.on("end", function () { processData(_input); }); Cut the Tree Python Solution class Tree(object): def __init__(self, value): self.value = value self.adj = [] self.parentTotal = 0 self.total = value self.parent = -1 self.auxIndex = 0 self.sumMax = -1 def calculateTotalI(nodes, root): stack = [int]*len(nodes) stack[0] = root stackIndex = 0 while stackIndex >= 0: currentIndex = stack[stackIndex] current = nodes[currentIndex] if current.auxIndex >= len(current.adj): stackIndex -= 1 nodes[current.parent].total += current.total else: while current.auxIndex < len(current.adj): if current.adj[current.auxIndex] != current.parent: stackIndex += 1 stack[stackIndex] = current.adj[current.auxIndex] current.auxIndex += 1 nodes[stack[stackIndex]].parent = currentIndex break else: current.auxIndex += 1 def calculateParentTotalI(nodes, root): queue = [int]*len(nodes) queue[0] = root qIndex = 0 while qIndex >= 0: current = nodes[queue[qIndex]] qIndex -= 1 for n in current.adj: if n != current.parent: nodes[n].parentTotal = current.parentTotal + current.total - nodes[n].total qIndex += 1 queue[qIndex] = n def minCutI(nodes, root, min): queue = [int]*len(nodes) queue[0] = root qIndex = 0 currentMin = min while qIndex >= 0: current = nodes[queue[qIndex]] qIndex -= 1 for n in current.adj: if n != current.parent: qIndex += 1 queue[qIndex] = n total1 = nodes[n].parentTotal total2 = nodes[n].total total = abs(total1 - total2) if total < currentMin: currentMin = total return currentMin if __name__=="__main__": N = int(input()) values = input().split() values = [ int(x) for x in values ] nodes = [None]*N root = -1 sumMax = sum(values) for x in range(N): nodes[x] = Tree(values[x]) nodes[x].min = sumMax for z in range(N-1): i, j = input().split() i, j = int(i)-1, int(j)-1 if root == -1: root = i nodes[i].adj.append(j) nodes[j].adj.append(i) calculateTotalI(nodes,root) calculateParentTotalI(nodes,root) print(minCutI(nodes, root, sum(values))) c C# C++ HackerRank Solutions java javascript python CcppCSharpHackerrank Solutionsjavajavascriptpython