HackerRank Minimum Distances Problem Solution Yashwant Parihar, April 18, 2023April 19, 2023 In this post, we will solve HackerRank Minimum Distances Problem Solution. The distance between two array values is the number of indices between them. Given a find the minimum distance between any pair of equal elements in the array. If no such value exists, return -1.Examplea = [3, 2, 1, 2, 3]There are two matching pairs of values: 3 and 2. The indices of the 3’s are i=0 and j = 4, so their distance is d[i, j] = |j — i| = 4. The indices of the 2’s are i = 1 and j = 3, so their distance is d[i, j] = |ji| = 2. The minimum distance is 2. Function Description Complete the minimumDistances function in the editor below. minimumDistances has the following parameter(s): int a[n]: an array of integers Returns int: the minimum distance found or -1 if there are no matching elements Input FormatThe first line contains an integer n, the size of array a. The second line contains n space-separated integers a[i]. Output FormatPrint a single integer denoting the minimum d[i, j] in a. If no such value exists, print -1. Sample Input STDIN Function ----- -------- 6 arr[] size n = 6 7 1 3 4 1 7 arr = [7, 1, 3, 4, 1, 7] Sample Output 3 ExplanationThere are two pairs to consider: a[1] and @[4] are both 1, so d[1, 4] = |1 — 4 = 3. a[0] and @[5] are both 7, so d[0, 5] = 10-5 = 5. The answer is min(3,5) = 3. HackerRank Minimum Distances Problem Solution Minimum Distances C Solution #include <math.h> #include <stdio.h> #include <string.h> #include <stdlib.h> #include <assert.h> #include <limits.h> #include <stdbool.h> int main(){ int n; scanf("%d",&n); int *A = malloc(sizeof(int) * n); for(int i = 0; i < n; i++){ scanf("%d",&A[i]); } int i, j; int distance = n; for(i=0; i<n-1; i++) for(j=i+1; j<n; j++) { if(A[i]==A[j]) { distance = (distance<(j-i))?distance:(j-i); } } if(distance == n) distance = -1; printf("%d\n", distance); return 0; } Minimum Distances C++ Solution #include <map> #include <set> #include <list> #include <cmath> #include <ctime> #include <deque> #include <queue> #include <stack> #include <string> #include <bitset> #include <cstdio> #include <limits> #include <vector> #include <climits> #include <cstring> #include <cstdlib> #include <fstream> #include <numeric> #include <sstream> #include <iostream> #include <algorithm> #include <unordered_map> using namespace std; int main(){ int n; cin >> n; vector<int> A(n); for(int i = 0;i < n;i++){ cin >> A[i]; } int result = -1; for(int i = 0; i < n - 1; i++){ for(int j = i + 1; j < n; j++){ if(A[j] == A[i]){ int dist = j - i; if(result == -1 || dist < result){ result = dist; } break; } } } cout << result << endl; return 0; } Minimum Distances C Sharp Solution using System; using System.Collections.Generic; using System.IO; using System.Linq; class Solution { static void Main(String[] args) { int n = Convert.ToInt32(Console.ReadLine()); string[] A_temp = Console.ReadLine().Split(' '); int[] A = Array.ConvertAll(A_temp,Int32.Parse); Console.WriteLine(minDistance(n, A)); } public static object minDistance(int n, int[] arr) { if ((n < 1 | n > 1000)) return -1; int dist = 0; List<int> distances = new List<int>(); for (int i = 0; i <= n - 1; i++) { int cur = arr[i]; if ((cur < 1 | cur > 100000)) return -1; int curPos = i; for (int j = i + 1; j <= n - 1; j++) { if (arr[j] == cur) { dist = j - curPos; distances.Add(dist); } } } if (distances.Count == 0) return -1; return distances.Min(); } } Minimum Distances Java Solution import java.io.*; import java.math.*; import java.security.*; import java.text.*; import java.util.*; import java.util.concurrent.*; import java.util.function.*; import java.util.regex.*; import java.util.stream.*; import static java.util.stream.Collectors.joining; import static java.util.stream.Collectors.toList; class Result { /* * Complete the 'minimumDistances' function below. * * The function is expected to return an INTEGER. * The function accepts INTEGER_ARRAY a as parameter. */ public static int minimumDistances(List<Integer> a) { HashMap<Integer, Integer> nums = new HashMap<Integer, Integer>(); nums.put(a.get(0), 0); int min = Integer.MAX_VALUE; boolean f =false; for(int i = 1; i < a.size(); i++){ if(nums.containsKey(a.get(i))){ nums.put(a.get(i), i - nums.get(a.get(i))); f = true; if( nums.get(a.get(i)) < min){ min = nums.get(a.get(i)); } }else{ nums.put(a.get(i), i); } } if(!f) return -1; return min; } } public class Solution { public static void main(String[] args) throws IOException { BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(System.in)); BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(System.getenv("OUTPUT_PATH"))); int n = Integer.parseInt(bufferedReader.readLine().trim()); List<Integer> a = Stream.of(bufferedReader.readLine().replaceAll("\\s+$", "").split(" ")) .map(Integer::parseInt) .collect(toList()); int result = Result.minimumDistances(a); bufferedWriter.write(String.valueOf(result)); bufferedWriter.newLine(); bufferedReader.close(); bufferedWriter.close(); } } Minimum Distances JavaScript Solution process.stdin.resume(); process.stdin.setEncoding('ascii'); var input_stdin = ""; var input_stdin_array = ""; var input_currentline = 0; process.stdin.on('data', function (data) { input_stdin += data; }); process.stdin.on('end', function () { input_stdin_array = input_stdin.split("\n"); main(); }); function readLine() { return input_stdin_array[input_currentline++]; } /////////////// ignore above this line //////////////////// function main() { var n = parseInt(readLine()); A = readLine().split(' '); A = A.map(Number); var B = A.map(function (val, index) { return {value: val, index: index}; }); B.sort(function(obj1, obj2) { var diff = obj1.value - obj2.value; if (diff != 0) { return diff; } return obj1.index - obj2.index; }); var minDistance = -1; for (var i = 1; i < B.length; i++) { if (B[i].value == B[i - 1].value) { var distance = B[i].index - B[i - 1].index; if (minDistance == -1) { minDistance = distance; } else if (distance < minDistance) { minDistance = distance; } } } console.log(minDistance); //B.forEach(function(obj) { console.log(obj.value + " " + obj.index)} ); } Minimum Distances Python Solution n = int(input()) a = [int(_) for _ in input().split()] b = {} ans = n for i in range(n): if a[i] in b: ans = min(ans, i - b[a[i]]) b[a[i]] = i if ans == n: print(-1) else: print(ans) Other Solutions HackerRank Halloween Sale Problem Solution HackerRank The Time in Words Problem Solution c C# C++ HackerRank Solutions java javascript python CcppCSharpHackerrank Solutionsjavajavascriptpython