HackerRank Running Time of Algorithms Solution Yashwant Parihar, April 24, 2023April 28, 2023 In this post, we will solve HackerRank Running Time of Algorithms Solution. In a previous challenge you implemented the Insertion Sort algorithm. It is a simple sorting algorithm that works well with small or mostly sorted data. However, it takes a long time to sort large unsorted data. To see why, we will analyze its running time.Running Time of AlgorithmsThe running time of an algorithm for a specific input depends on the number of operationsexecuted. The greater the number of operations, the longer the running time of analgorithm. We usually want to know how many operations an algorithm will execute inproportion to the size of its input, which we will call N.What is the ratio of the running time of Insertion Sort to the size of the input? To answer this question, we need to examine the algorithm.Analysis of Insertion SortFor each element V in an array of N numbers, Insertion Sort compares the number to those to its left until it reaches a lower value element or the start. At that point it shifts everything to the right up one and inserts V into the array.How long does all that shifting take?In the best case, where the array was already sorted, no element will need to be moved, so the algorithm will just run through the array once and return the sorted array. The running time would be directly proportional to the size of the input, so we can say it will take N time.However, we usually focus on the worst-case running time (computer scientists are pretty pessimistic). The worst case for Insertion Sort occurs when the array is in reverse order. To insert each number, the algorithm will have to shift over that number to the beginning of the array. Sorting the entire array of N numbers will therefore take 1+2+…+(N − 1) operations, which is N(N-1)/2 (almost №2/2). Computer scientists just round that up (pick the dominant term) to N2 and say that Insertion Sort is an “N² time” algorithm. What this meansThe running time of the algorithm against an array of N elements is N². For 2N elements, it will be 4N2. Insertion Sort can work well for small inputs or if you know the data is likely to be nearly sorted, like check numbers as they are received by a bank. The running time becomes unreasonable for larger inputs.ChallengeCan you modify your previous Insertion Sort implementation to keep track of the number of shifts it makes while sorting? The only thing you should print is the number of shifts made by the algorithm to completely sort the array. A shift occurs when an element’s position changes in the array. Do not shift an element if it is not necessary. unction Description Complete the runningTime function in the editor below. runningTime has the following parameter(s): int arr[n]: an array of integers Returns int: the number of shifts it will take to sort the array Input FormatThe first line contains the integern, the number of elements to be sorted.The next line contains n integers of arr[arr[0]… arr[n-1]]. Sample Input STDIN Function ----- -------- 5 arr[] size n =5 2 1 3 1 2 arr = [2, 1, 3, 1, 2] Sample Output 4 Explanation Iteration Array Shifts 0 2 1 3 1 2 1 1 2 3 1 2 1 2 1 2 3 1 2 0 3 1 1 2 3 2 2 4 1 1 2 2 3 1 Total 4 HackerRank Running Time of Algorithms Problem Solution Running Time of Algorithms C Solution #include <stdio.h> #include <string.h> #include <math.h> #include <stdlib.h> int main() { int ar_size; scanf("%d", &ar_size); int ar[ar_size], _ar_i; for(_ar_i = 0; _ar_i < ar_size; _ar_i++) { scanf("%d", &ar[_ar_i]); } int j; int Count = 0; for(_ar_i = 1; _ar_i < ar_size; _ar_i++) { int Temp = ar[_ar_i]; for(j = _ar_i; j >= 0; j--) { if (ar[j - 1] > Temp) { ar[j] = ar[j - 1]; Count++; } else { ar[j] = Temp; break; } } } printf("%d\n", Count); return 0; } Running Time of Algorithms C++ Solution #include <cmath> #include <cstdio> #include <vector> #include <iostream> #include <algorithm> int n, a[1005], ans=0; int main() { scanf("%d",&n); for(int i=0;i<n;i++) scanf("%d",&a[i]); for(int i=1;i<n;i++){ int k=a[i],j=i; for (;j>0 && a[j-1]>k;j--){ a[j] = a[j-1]; ans++; } a[j]=k; } printf("%d\n",ans); return 0; } Running Time of Algorithms C Sharp Solution using System; class Solution { /* static void InsertionSort(int[] ar) { int i = ar.Length - 2; int tmp = ar[i+1]; while (i >= 0 && ar[i] > tmp) { ar[i + 1] = ar[i]; foreach (int x in ar) { Console.Write("{0} ", x); } Console.WriteLine(); i--; } ar[i+1] = tmp; foreach (int x in ar) { Console.Write("{0} ", x); } }*/ static void InsertionSort(int[] ar) { int shifts = 0; for (int i = 1; i < ar.Length; i++) { int tmp = ar[i]; int j = i; while (j > 0 && ar[j - 1] > tmp) { ar[j] = ar[j - 1]; shifts++; j--; } ar[j] = tmp; } Console.WriteLine(shifts); } static void Main() { int t = int.Parse(Console.ReadLine()); string[] line = Console.ReadLine().Split(); int[] arr = new int[t]; for (int i = 0; i < t; i++) { arr[i] = int.Parse(line[i]); } InsertionSort(arr); } } Running Time of Algorithms Java Solution import java.io.*; import java.math.*; import java.security.*; import java.text.*; import java.util.*; import java.util.concurrent.*; import java.util.function.*; import java.util.regex.*; import java.util.stream.*; import static java.util.stream.Collectors.joining; import static java.util.stream.Collectors.toList; class Result { /* * Complete the 'runningTime' function below. * * The function is expected to return an INTEGER. * The function accepts INTEGER_ARRAY arr as parameter. */ public static int runningTime(List<Integer> arr) { int shiftCount = 0; int n = arr.size(); for (int i = 1; i < n; ++i) { int key = arr.get(i); int j = i - 1; while (j >= 0 && arr.get(j) > key) { arr.set(j + 1, arr.get(j)); j = j - 1; shiftCount++; } arr.set(j + 1, key); } return shiftCount; } } public class Solution { public static void main(String[] args) throws IOException { BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(System.in)); BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(System.getenv("OUTPUT_PATH"))); int n = Integer.parseInt(bufferedReader.readLine().trim()); List<Integer> arr = Stream.of(bufferedReader.readLine().replaceAll("\\s+$", "").split(" ")) .map(Integer::parseInt) .collect(toList()); int result = Result.runningTime(arr); bufferedWriter.write(String.valueOf(result)); bufferedWriter.newLine(); bufferedReader.close(); bufferedWriter.close(); } } Running Time of Algorithms JavaScript Solution function sortArrayValueByIndex(array, i) { var moves = 0; while (array[i-1] >= array[i] && array[i-1] != array[i]) { moves++; array.splice(--i, 2, array[i+1], array[i]); } return moves; } function getOutput(input) { var rows = input.split('\n'); var n = parseInt(rows.shift(), 10); var array = rows.shift().split(' '); for (var i = 0; i < n; i++) { array[i] = parseInt(array[i], 10); } var totalMoves = 0; var index = array.length-1; for (var i = 1; i < array.length; i++) { totalMoves += sortArrayValueByIndex(array, i); } return totalMoves; }; process.stdin.resume(); process.stdin.setEncoding('ascii'); var _input = ''; process.stdin.on('data', function (data) { _input += data; }); process.stdin.on('end', function () { process.stdout.write(getOutput(_input)); }); Running Time of Algorithms Python Solution import sys def print_list(data): for element in data: print(element, end=' ') print() length =int(sys.stdin.readline()) data = [] raw = sys.stdin.readline().split() for index in range(length): data.append(int(raw[index])) counter = 0 for index in range(1, length): element = data[index] try: for pointer in range(index,0,-1): if data[pointer-1] <= element: raise StopIteration('Place found!') data[pointer] = data[pointer-1] counter += 1 data[0] = element except StopIteration: data[pointer] = element #print_list(data[case]) print(counter) Other Solutions HackerRank in a String! Problem Solution HackerRank Quicksort 1 – Partition Solution c C# C++ HackerRank Solutions java javascript python CcppCSharpHackerrank Solutionsjavajavascriptpython